在本文中,我们研究了具有N节点的目标两层神经网络的压缩到具有M <n节点的压缩网络中。更确切地说,我们考虑目标网络权重为I.I.D的设置。在高斯输入的假设下,次高斯次级高斯,我们最大程度地减少了目标和压缩网络的输出之间的L_2损失。通过使用高维概率的工具,我们表明,当目标网络充分过度参数化时,可以简化此非凸问题,并提供此近似值作为输入维度和N的函数。平均场限制,简化的目标以及压缩网络的最佳权重不取决于目标网络的实现,而仅取决于预期的缩放因素。此外,对于具有relu激活的网络,我们猜想通过在等缘紧密框架(ETF)上取重量来实现简化优化问题的最佳,而权重的缩放和ETF的方向取决于ETF的方向目标网络。提供数值证据以支持此猜想。
translated by 谷歌翻译
本文认为,考虑了深神经网络(DNN)训练中最佳梯度无损压缩的问题。渐变压缩在许多分布式DNN培训方案中是相关的,包括最近流行的联合学习(FL)场景,其中每个远程用户通过无噪声限制通道连接到参数服务器(PS)。在分布式DNN培训中,如果可用的底层梯度分布,则可以使用经典的无损压缩方法来减少传送渐变条目所需的比特数。平均场分析表明,梯度更新可以被认为是独立的随机变量,而拉普拉斯近似可以用来争论梯度具有近似于某些制度中的正常(范数)分布的分布。在本文中,我们认为,对于某些实际兴趣的网络,梯度条目可以很好地建模为具有广义的正常(Gennorm)分布。我们提供了数值评估,以验证假设进流模型提供了对DNN梯度尾部分布的更准确的预测。此外,在将诸如Huffman编码的经典修复到可变无损编码算法应用于量化的梯度更新,该建模选择在梯度的无损压缩方面提供了具体的改进。后一种结果确实提供了一种有效的压缩策略,具有较低的内存和计算复杂性,在分布式DNN培训场景中具有很大的实际相关性。
translated by 谷歌翻译
最近,已经提出了几种方法,用于使用深神经网络估计来自样本数据的互信息,并且没有知道数据的特写形式分布。这类估算器被称为神经互动信息估计。虽然非常有希望,但是这种技术尚未严格地标记,以便建立它们的功效,易于实现和能力估计的稳定性,这是关节最大化帧工作。在本文中,我们比较文献中提出的不同技术,以估算能力,并提供从业者的效力。特别是,我们研究了相互信息神经估算器(MINE),平滑的互信息下限估计器(微笑)的性能,以及指导信息神经估算器(DINE),并提供对INCONCE的见解。我们在他们学习作为AWGN通道的容量接近的容量接近的输入分布的能力方面评估了这些算法,光学强度信道和峰值功率受限AWGN通道。对于这两种情况,我们对培训过程的各个方面提供了富有洞察力的评论,例如稳定性,初始化的敏感性。
translated by 谷歌翻译
It is well known that conservative mechanical systems exhibit local oscillatory behaviours due to their elastic and gravitational potentials, which completely characterise these periodic motions together with the inertial properties of the system. The classification of these periodic behaviours and their geometric characterisation are in an on-going secular debate, which recently led to the so-called eigenmanifold theory. The eigenmanifold characterises nonlinear oscillations as a generalisation of linear eigenspaces. With the motivation of performing periodic tasks efficiently, we use tools coming from this theory to construct an optimization problem aimed at inducing desired closed-loop oscillations through a state feedback law. We solve the constructed optimization problem via gradient-descent methods involving neural networks. Extensive simulations show the validity of the approach.
translated by 谷歌翻译
Detecting anomalous data within time series is a very relevant task in pattern recognition and machine learning, with many possible applications that range from disease prevention in medicine, e.g., detecting early alterations of the health status before it can clearly be defined as "illness" up to monitoring industrial plants. Regarding this latter application, detecting anomalies in an industrial plant's status firstly prevents serious damages that would require a long interruption of the production process. Secondly, it permits optimal scheduling of maintenance interventions by limiting them to urgent situations. At the same time, they typically follow a fixed prudential schedule according to which components are substituted well before the end of their expected lifetime. This paper describes a case study regarding the monitoring of the status of Laser-guided Vehicles (LGVs) batteries, on which we worked as our contribution to project SUPER (Supercomputing Unified Platform, Emilia Romagna) aimed at establishing and demonstrating a regional High-Performance Computing platform that is going to represent the main Italian supercomputing environment for both computing power and data volume.
translated by 谷歌翻译
Methods based on ordinary differential equations (ODEs) are widely used to build generative models of time-series. In addition to high computational overhead due to explicitly computing hidden states recurrence, existing ODE-based models fall short in learning sequence data with sharp transitions - common in many real-world systems - due to numerical challenges during optimization. In this work, we propose LS4, a generative model for sequences with latent variables evolving according to a state space ODE to increase modeling capacity. Inspired by recent deep state space models (S4), we achieve speedups by leveraging a convolutional representation of LS4 which bypasses the explicit evaluation of hidden states. We show that LS4 significantly outperforms previous continuous-time generative models in terms of marginal distribution, classification, and prediction scores on real-world datasets in the Monash Forecasting Repository, and is capable of modeling highly stochastic data with sharp temporal transitions. LS4 sets state-of-the-art for continuous-time latent generative models, with significant improvement of mean squared error and tighter variational lower bounds on irregularly-sampled datasets, while also being x100 faster than other baselines on long sequences.
translated by 谷歌翻译
Recently, e-scooter-involved crashes have increased significantly but little information is available about the behaviors of on-road e-scooter riders. Most existing e-scooter crash research was based on retrospectively descriptive media reports, emergency room patient records, and crash reports. This paper presents a naturalistic driving study with a focus on e-scooter and vehicle encounters. The goal is to quantitatively measure the behaviors of e-scooter riders in different encounters to help facilitate crash scenario modeling, baseline behavior modeling, and the potential future development of in-vehicle mitigation algorithms. The data was collected using an instrumented vehicle and an e-scooter rider wearable system, respectively. A three-step data analysis process is developed. First, semi-automatic data labeling extracts e-scooter rider images and non-rider human images in similar environments to train an e-scooter-rider classifier. Then, a multi-step scene reconstruction pipeline generates vehicle and e-scooter trajectories in all encounters. The final step is to model e-scooter rider behaviors and e-scooter-vehicle encounter scenarios. A total of 500 vehicle to e-scooter interactions are analyzed. The variables pertaining to the same are also discussed in this paper.
translated by 谷歌翻译
As one of the most popular micro-mobility options, e-scooters are spreading in hundreds of big cities and college towns in the US and worldwide. In the meantime, e-scooters are also posing new challenges to traffic safety. In general, e-scooters are suggested to be ridden in bike lanes/sidewalks or share the road with cars at the maximum speed of about 15-20 mph, which is more flexible and much faster than the pedestrains and bicyclists. These features make e-scooters challenging for human drivers, pedestrians, vehicle active safety modules, and self-driving modules to see and interact. To study this new mobility option and address e-scooter riders' and other road users' safety concerns, this paper proposes a wearable data collection system for investigating the micro-level e-Scooter motion behavior in a Naturalistic road environment. An e-Scooter-based data acquisition system has been developed by integrating LiDAR, cameras, and GPS using the robot operating system (ROS). Software frameworks are developed to support hardware interfaces, sensor operation, sensor synchronization, and data saving. The integrated system can collect data continuously for hours, meeting all the requirements including calibration accuracy and capability of collecting the vehicle and e-Scooter encountering data.
translated by 谷歌翻译
In this paper, we propose SceNDD: a scenario-based naturalistic driving dataset that is built upon data collected from an instrumented vehicle in downtown Indianapolis. The data collection was completed in 68 driving sessions with different drivers, where each session lasted about 20--40 minutes. The main goal of creating this dataset is to provide the research community with real driving scenarios that have diverse trajectories and driving behaviors. The dataset contains ego-vehicle's waypoints, velocity, yaw angle, as well as non-ego actor's waypoints, velocity, yaw angle, entry-time, and exit-time. Certain flexibility is provided to users so that actors, sensors, lanes, roads, and obstacles can be added to the existing scenarios. We used a Joint Probabilistic Data Association (JPDA) tracker to detect non-ego vehicles on the road. We present some preliminary results of the proposed dataset and a few applications associated with it. The complete dataset is expected to be released by early 2023.
translated by 谷歌翻译
This project leverages advances in multi-agent reinforcement learning (MARL) to improve the efficiency and flexibility of order-picking systems for commercial warehouses. We envision a warehouse of the future in which dozens of mobile robots and human pickers work together to collect and deliver items within the warehouse. The fundamental problem we tackle, called the order-picking problem, is how these worker agents must coordinate their movement and actions in the warehouse to maximise performance (e.g. order throughput) under given resource constraints. Established industry methods using heuristic approaches require large engineering efforts to optimise for innately variable warehouse configurations. In contrast, the MARL framework can be flexibly applied to any warehouse configuration (e.g. size, layout, number/types of workers, item replenishment frequency) and the agents learn via a process of trial-and-error how to optimally cooperate with one another. This paper details the current status of the R&D effort initiated by Dematic and the University of Edinburgh towards a general-purpose and scalable MARL solution for the order-picking problem in realistic warehouses.
translated by 谷歌翻译